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A theory of particle deposition in turbulent
pipe flow
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The paper describes a theory of particle deposition based formally on the conservation
equations of particle mass and momentum. These equations are formulated in an
Eulerian coordinate system and are then Reynolds averaged, a procedure which
generates a number of turbulence correlations, two of which are of prime importance.
One represents ‘ turbulent diffusion’ and the other ‘ turbophoresis ’, a convective drift
of particles down gradients of mean-square fluctuating velocity. Turbophoresis is not
a small correction; it dominates the particle dynamic behaviour in the diffusion-
impaction and inertia-moderated regimes.

Adopting a simple model for the turbophoretic force, the theory is used to calculate
deposition from fully developed turbulent pipe flow. Agreement with experimental
measurements is good. It is found that the Saffman lift force plays an important role
in the inertia-moderated regime but that the effect of gravity on deposition from
vertical flows is negligible. The model also predicts an increase in particle concentration
close to the wall in the diffusion-impaction regime, a result which is partially
corroborated by an independent ‘direct numerical simulation’ study.

The new deposition theory represents a considerable advance in physical
understanding over previous free-flight theories. It also offers many avenues for future
development, particularly in the simultaneous calculation of laminar (pure inertial)
and turbulent particle transport in more complex two- and three-dimensional
geometries.

1. Introduction

The problem of predicting the deposition rate of small particles suspended in a
turbulent gas flow in a pipe has occupied the attention of researchers for more than
forty years. Work has undoubtedly been stimulated by its practical relevance to many
areas of technology and science but interest has also been aroused by the intellectual
challenge of the problem and the inability of any theory to provide a truly satisfying
physical explanation of the observed facts.

These facts are well-known and are not in dispute. They are also quite dramatic.
Figure 1 summarizes the content of many experiments of which the most frequently
quoted are those of Liu & Agarwal (1974). The figure shows the rate of particle
deposition on the wall of a circular pipe as a function of particle size, the variables
being non-dimensionalized in the conventional fashion. Thus, the dimensionless
deposition velocity V

dep+
is defined by

V
dep+

¯
J
w

ρ
pm

uk
, (1)

where J
w

is the mass flux of particles to the wall per unit area, ρ
pm

is the mean particle
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F 1. Particle deposition from fully developed turbulent pipe flow: a summary of
experimental data.

density in the pipe (mass of particles per unit volume) and uk is the friction velocity
(u#

$

¯ τ
w
}ρ

g
, where τ

w
is the wall shear stress and ρ

g
is the gas density). The dimension-

less particle relaxation time τ
p+

is defined by

τ
p+

¯ τ
p
u#

$

}ν
g
, (2)

where ν
g

is the kinematic viscosity of the gas. τ
p

is the particle relaxation time,

τ
p
¯

ρ
mat

d #
p

18ρ
g
ν
g

(1­2.7Kn), (3)

where d
p

is the particle diameter, ρ
mat

is the particle material density and Kn¯λ
g
}d

p

is the particle Knudsen number, λ
g

being the mean free path of a gas molecule. The
expression for τ

p
is based on the Stokes drag law for a spherical particle modified by

a correction factor (1­2.7Kn) due to Cunningham (1910) which models deviations
from continuum behaviour when the particle diameter is comparable with the
molecular mean free path.

The deposition curves of figure 1 are nominally divided into three regimes. In the
‘diffusional deposition’ regime, V

dep+
is a monotonically decreasing function of τ

p+
and

also depends on the particle Schmidt number, Sc¯ ν
g
}D

p
, where D

p
is the particle

Brownian diffusion coefficient. D
p

is assumed to be given by the Einstein equation,

D
p
¯R

p
Tτ

p
, (4)

T being the temperature (the flow is assumed to be isothermal), and R
p
¯k}m

p
, where

k is Boltzmann’s constant and m
p
¯πd $

p
ρ
max

}6 is the mass of a particle. In this regime,
particle transport to the wall is well represented by a gradient diffusion model, that is
by ‘turbulent diffusion’ in the core of the pipe and Brownian diffusion in a very thin
layer directly adjacent to the wall.
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In the ‘diffusion-impaction’ regime, a dramatic increase in deposition rate of several
orders of magnitude is observed corresponding to about a fourfold increase in particle
diameter. From the early days, this was recognized, quite correctly, as the result of the
interaction between particles having significant inertia and the fluid turbulent eddies.
Starting from the work of Friedlander & Johnstone (1957), a theory, variously referred
to as the ‘ free-flight ’ or ‘stop-distance’ model, was developed over a period of more
than twenty years. The essence of the model is that particles are transported by
gradient diffusion to within one ‘stop-distance’ of the wall where they acquire sufficient
inertia to ‘coast ’ across the viscous sub-layer.

The free-flight model lacks rigour but it does provide an attractive physical
explanation with the exception of one, very serious, shortcoming. In order to obtain
agreement with experiment, it is necessary to assume that the particles acquire a
velocity towards the wall at the stop distance approximately equal to the friction
velocity uk. However, at these locations of between about 1 and 10 ‘wall units ’ from
the surface (one wall unit corresponds to a distance ν

g
}uk), the r.m.s. fluctuating

velocity of the gas is very much less than uk and it has never been satisfactorily
explained how the particles acquire the necessary wallwards momentum from the
prevailing low level of turbulence. Indeed, a more formally correct interpretation of
the free-flight model (Davies 1966) predicts deposition rates some two orders of
magnitude less than those observed experimentally.

The third region is known as the ‘ inertia-moderated’ regime. Here, gradient
diffusion is assumed to play little or no part, the very massive particles acquiring
sufficient momentum from the large eddies in the turbulent core to reach the wall
directly. The reduction in deposition rate with increasing particle size is explained by
the fact that the increasing particle inertia results in a decreasing response to the
turbulence.

Many variations of the stop-distance model can be found in the literature and the
reader is referred to the review by Papavergos & Hedley (1984) for details. However,
virtually all analyses are based on matching a solution of the particle conservation
equation (derived under an assumption of equal particle and gas time-mean velocities)
to a free-flight model at an interface located one stop-distance from the wall. The
momentum equation for the particles is generally not invoked despite the fact that this
provides the only possibility for estimating the particle convective velocity generated
by the fluid turbulence, i.e. the phenomenon accepted as being responsible for the huge
increase in deposition rate in the diffusion-impaction regime.

Recently, however, two important papers have examined the role of the momentum
equation in the deposition process. By using a Monte Carlo method based on
Lagrangian ‘particle tracking’ in a numerically generated random flow field, Kallio &
Reeks (1989) were able to demonstrate the main features of the deposition curves
shown in figure 1. Johansen (1991) also found good agreement with experiment by
adopting a fully Eulerian approach with empirical closure models for the particle
turbulence terms.

This paper proposes a more formal theory of deposition in fully developed
isothermal turbulent pipe flow. The governing equations are formulated in an Eulerian
framework and are then Reynolds averaged. This helps to clarify the physical processes
responsible for deposition and also highlights ways of extending the model to more
complex flow fields than the pipe flow considered here. Johansen (1991) chose to work
with the equations in divergence-free form but this has the disadvantage of obscuring
the dominating physical processes by the proliferation of turbulence terms. A more
transparent analysis results from the use of the equations in non-conservative form.
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Consideration is also given to the wall boundary conditions. To date, scant attention
has been paid to their correct form, despite their importance to deposition.
Accordingly, a new, physically based, model boundary condition for the particle
density is proposed.

2. The particle equations of motion

Consider the flow of small particles suspended in a gas. The particles are assumed
to be spherical and monodispersed of diameter d

p
and mass m

p
. If the number of

particles per unit volume is n
p
, then the particle density (mass per unit volume) is ρ

p
¯

n
p
m

p
. (ρ

p
should not be confused with ρ

mat
the material density of the particles.) The

analysis is restricted to dilute suspensions of particles, implying that the fluid motion
is unaffected by the presence of the particles and that particle–particle collisions are
unimportant. The conditions for which these assumptions are valid are discussed by
Johansen (1991) and are fulfilled for most reported experiments on particle deposition
from turbulent gas flows.

The equations describing particle motion in a gas are the conservation equations of
particle mass (or number) and momentum. The effect of the gas in controlling the
motion enters via the momentum equation in providing ‘external ’ force terms acting
on the particles. These external fluid force terms must be specified in some way before
a solution to the particle equations can be found. For a complex three-dimensional
turbulent gas flow field no general approach to this very difficult problem exists but,
for the simple pipe flow considered here, sufficiently accurate models of the turbulence
are available.

Let J be a vector representing the total mass flux of particles per unit area. The
‘total ’ particle velocity V

T
is then defined by the equality

J¯ ρ
p
V

T
. (5)

V
T

is a mean velocity averaged over the random thermal motions of all the particles
which are treated, in this respect, as large molecules. Conservation of mass for the
particles is then expressed in differential form by the equation

¥ρ
p

¥t
­¡[(ρ

p
V

T
)¯ 0. (6)

It should be noted that the mass flux due to Brownian diffusion does not appear
explicitly in (6) when written in terms of V

T
(Fernandez de la Mora & Rosner 1982).

The particle momentum equation is given by (Ramshaw 1979, 1981)

ρ
p 9¥VT

¥t
­(V

T
[¡)V

T:¯®¡p
p
­ρ

p
F­ρ

p
g, (7)

where p
p

is the partial pressure associated with the random thermal motion of the
particles, F is the force exerted by the gas on the particles per unit mass of particles
(averaged over the random thermal motions) and g is the acceleration due to gravity.
Electrostatic forces have been neglected but could be introduced if desired. (Note that,
when taking the divergence of the particle stress tensor to obtain the term
®¡p

p
, the particle ‘viscous’ stresses have also been neglected.)

In evaluating p
p

it is assumed that the particles and gas are in thermal equilibrium.
Equipartition of energy then requires

p
p
¯ n

p
kT¯ ρ

p
R

p
T, (8)
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and hence, assuming the flow is isothermal,

¡p
p
¯R

p
T¡ρ

p
¯

D
p

τ
p

¡ρ
p
, (9)

where D
p

is the particle Brownian diffusion coefficient given by (4). Strictly speaking,
the substitution of (9) into (7) is only valid when the left-hand side of (7) is negligible
compared to ®¡p

p
. However, the only time when Brownian diffusion is important as

a particle transport mechanism is for very small particles extremely close to the wall
and this is precisely when the left-hand side of (7) becomes negligibly small compared
with ®¡p

p
. In other situations, the calculated value of the Brownian flux will be in

error, but this flux will be totally overshadowed by other transport mechanisms.
As discussed in detail by Maxey & Riley (1983), the force F exerted by the fluid on

the particles includes contributions from the steady-state viscous drag, the Basset force,
the virtual mass effect, the force due to the fluid pressure gradient, the Saffman lift force
due to fluid shear, the Magnus force due to particle rotation and the thermophoretic
force (if the flow is non-isothermal). In principle, these can all be included in the
analysis but when ρ

mat
( ρ

g
(a condition assumed here) the only significant

contributions in isothermal flow are from the steady-state viscous drag F
D

and,
possibly, the Saffman lift force F

L
. Hence,

F¯F
D
­F

L
. (10)

The steady-state viscous drag per unit particle mass is given by

F
D

¯
Φ

D

τ
p

(U®V
T
), (11)

where U is the gas velocity and τ
p

is the particle relaxation time given by equation (3).
Φ

D
is a function of the particle slip Reynolds number (Re

p
¯ d

p
rU®V

T
r}ν

g
) and is

given by

Φ
D

¯
Re

p

24
C

D
, (12)

where C
D

¯C
D
(Re

p
) is the particle drag coefficient. Values of C

D
were obtained from

the empirical representation of Morsi & Alexander (1972). For pipe flow, the Saffman
lift force acts in the radial direction and is given (per unit particle mass) by

F
L
¯ sign (κ) 3.08Φ

L
ρ
g
ρ−"
mat

ν"/#
g

d−"
p

(U
z
®V

z
) rκr"/# e

r
¯F

L
e
r
, (13)

where κ¯ ¥U
z
}¥r is the shear rate (z and r are the axial and radial coordinates

respectively), e
r
is a unit vector in the radial direction and Φ

L
¯Φ

L
(Re

p
) is an empirical

correction due to Mei (1992) to account for the effects of finite particle slip Reynolds
numbers. For the usual situation in pipe flow where the particles lead the gas near the
wall, κ! 0, V

z
"U

z
and the Saffman force is directed towards the pipe wall thus

tending to enhance the deposition rate.
According to Fischer & Rosenberger (1987) and McLaughlin (1993), the drag and

lift forces should be modified when the particles are very close to the wall. Although
these corrections could be integrated into (11) and (13), they have not been included
in order to avoid confusion. The modifications are unlikely to affect the overall
deposition rate but could influence the particle concentration profiles very near the
wall.

Substituting (9), (10) and (11) into the momentum equation (7) gives

9¥VT

¥t
­(V

T
[¡)V

T:¯®
D

p

τ
p
ρ
p

¡ρ
p
­

Φ
D

τ
p

(U®V
T
)­F

L
­g. (14)
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The total mass flux of particles J is now represented as the sum of a convective and
a Brownian diffusive contribution,

J¯J
conv

­J
diff

, (15)

where J
diff

¯®D
p
¡ρ

p
by definition. Writing J

conv
¯ ρ

p
V, equation (15) serves to

define the particle convective velocity V,

ρ
p
V

T
¯ ρ

p
V®D

p
¡ρ

p
. (16)

Combining (6) and (16) gives the more familiar form of the particle mass conservation
equation

¥ρ
p

¥t
­¡[(ρ

p
V )¯¡[(D

p
¡ρ

p
). (17)

Substituting (16) in (14) then gives for the momentum equation

9¥V¥t ­(V[¡)V:¯Φ
D

τ
p

(U®V )­F
L
­g, (18)

where V
T

has been replaced by V in the acceleration term. This is justifiable because,
in those regions of the flow where Brownian diffusion is insignificant VEV

T
, and in

those regions where Brownian diffusion dominates the acceleration term is negligible
anyway.

Equations (17) and (18) form the basis for the development of the deposition theory
described below. In passing, however, it is instructive to consider how the usual
methods of solution for inertial deposition (Lagrangian tracking) and diffusional
deposition (Eulerian integration) arose. The momentum equation (18) may be written

DV

Dt
¯

Φ
D

τ
p

(U®V )­F
L
­g, (19)

where D}Dt is the substantive derivative following a particle. This equation in
Lagrangian form does not involve ρ

p
and can be solved for V if the gas velocity field

U is known. Conversely, when diffusion is the dominant transport mechanism, the
particle conservation equation (17) for steady flow in Eulerian form is

¡[(ρ
p
V®D

p
¡ρ

p
)¯ 0. (20)

This can be solved for ρ
p

without recourse to (19) if it is assumed that V¯U and is
known. The success of the present method is largely due to the fact that both equations
are retained and solved simultaneously.

3. The Reynolds-averaged equations

For steady vertical pipe flow in a cylindrical polar coordinate system (r,φ, z) with z
measured vertically downwards, (17) and (18) take the following form (neglecting
Brownian diffusion in the axial direction) :

1

r

¥
¥r

(rρ
p
V
r
)­

1

r

¥
¥φ

(ρ
p
Vφ)­

¥
¥z

(ρ
p
V
z
)¯

1

r

¥
¥r 9rDp

¥ρ
p

¥r : , (21)

V
r

¥V
r

¥r
­

Vφ

r

¥V
r

¥φ
­V

z

¥V
r

¥z
®

Vφ Vφ

r
¯

Φ
D

τ
p

(U
r
®V

r
)­F

L
, (22)

V
r

¥V
z

¥r
­

Vφ

r

¥V
z

¥φ
­V

z

¥V
z

¥z
¯

Φ
D

τ
p

(U
z
®V

z
)­g. (23)
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The φ-component of the momentum equation has been omitted because it yields no
useful information for axisymmetric flow. The Saffman force F

L
is defined by (13).

For turbulent flow, time-mean and fluctuating components are introduced in the
usual way by

ρ
p
¯ ρ̀

p
­ρ!

p
,

V
r
¯V{

r
­�!

r
, U

r
¯U{

r
­u!

r
,

Vφ ¯V{
φ­�!φ, Uφ ¯U{

φ­u!φ,

V
z
¯V{

z
­�!

z
, U

z
¯U{

z
­u!

z
,

where, for fully developed pipe flow, U{
r
¯ 0.

The flow is assumed to be axisymmetric so that the circumferential variation of all
time-mean quantities (including products of fluctuating quantities) is zero. The flow is
also assumed to be non-swirling and hence V{

φ ¯U{
φ ¯ 0. At this stage, it is not

intrinsically obvious that a fully developed turbulent particle flow in a pipe is physically
attainable but, in anticipation of later results, the assumption will be made that the
time-mean particle velocity field is independent of the axial coordinate, i.e. ¥V{

r
}¥z¯

¥V{
z
}¥z¯ 0. ¥ρ̀

p
}¥z is not zero, however, as the particle density decreases in the flow

direction due to the deposition on the walls of the pipe. The axial variation of the time-
mean of all products of fluctuating components is also assumed to be zero.

The Reynolds-averaged particle mass and momentum equations are thus

1

r

¥
¥r

(rρ̀
p
V{
r
)­

¥
¥z

( ρ̀
p
V{
z
)¯

1

r

¥
¥r 9rDp

¥ρ̀
p

¥r :®
1

r

¥
¥r

(rρ!
p
�!
r
), (24)

V{
r

¥V{
r

¥r
¯®

Φz
D

V{
r

τ
p

­F{
L
­

�!φ �!φ
r

®(�«[¡) �!
r
, (25)

V{
r

¥V{
z

¥r
¯

Φz
D
(U{

z
®V{

z
)

τ
p

­g®(�«[¡) �!
z
, (26)

where �« is a vector having components (�!
r
, �!φ, �!z

) in cylindrical polar coordinates and
contributions to F{

L
from the velocity fluctuations are ignored. The final terms in (25)

and (26) can be simplified by introducing the particle mass conservation equation
(neglecting the contribution from Brownian diffusion). Thus,

(�«[¡) �!
r
¯¡[(�!

r
�«)®�!

r
(¡[�«)¯¡[(�!

r
�«)­�!

r
V[¡(ln ρ

p
),

(�«[¡) �!
z
¯¡[(�!

z
�«)®�!

z
(¡[�«)¯¡[(�!

z
�«)­�!

z
V[¡(ln ρ

p
).

Hence,

V{
r

¥V{
r

¥r
¯®

Φz
D

V{
r

τ
p

­F{
L
®

¥
¥r

(�!
r
�!
r
)­

(�!φ �!φ®�!
r
�!
r
)

r
®�!

r
V[¡(ln ρ

p
), (27)

V{
r

¥V{
z

¥r
¯

Φz
D
(U{

z
®V{

z
)

τ
p

­g®
¥
¥r

(�!
r
�!
z
)®

(�!
r
�!
z
)

r
®�!

z
V[¡(ln ρ

p
). (28)

Equations (24), (27) and (28) are the basic equations describing time-mean particle
transport in turbulent non-swirling pipe flow. With the exception of the work of
Johansen (1991), previous analyses have been confined to equation (24) alone with the
mandatory assumption that V{

r
¯U{

r
¯ 0 and V{

z
¯U{

z
(there being no other method of
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calculating the mean particle slip velocity). This is a serious deficiency of any
deposition theory because (apart from very small particles) particle transport is
dominated in certain regions of the pipe, not by diffusive, but by convective effects.
(The ‘stop-distance’ theory can actually be viewed as a crude attempt to confront this
problem by dividing the flow field into an outer diffusive region where (24) is operative
and an inner region close to the wall where convective effects (specified in a very
arbitrary way) dominate.)

4. Turbulence modelling

In order to close the system of equations, it is necessary to specify suitable
expressions for the terms involving the fluctuation correlations. Considerable interest
is currently being shown in this very difficult problem as exemplified by the work of
Reeks (1993) who, in a series of papers, is attempting to derive the constitutive
equations of turbulent particle flow from a fundamental kinetic equation similar to the
Boltzmann equation in the kinetic theory of gases. The aims of the present study,
however, are rather to demonstrate that the basic physical processes involved in
particle deposition can be quantitatively represented using comparatively simple
theoretical models.

Accordingly, the term (ρ!
p
�!
r
) in (24) is modelled by ‘gradient diffusion’,

®(ρ!
p
�!
r
)¯D

turb

¥ρ̀
p

¥r
, (29)

where D
turb

is the particle turbulent diffusion coefficient. D
turb

is related to the fluid
turbulent kinematic viscosity ν

turb
by the turbulent Schmidt number,

Sc
turb

¯ ν
turb

}D
turb

. (30)

For very small particles, Sc
turb

is expected to be near unity in analogy with the
turbulent Prandtl number. For larger particles displaying inertia effects, theories of
particle dispersion in homogeneous isotropic turbulence also indicate a turbulent
Schmidt number close to 1. In physical terms, although larger particles respond less
well to the turbulent fluctuations of the fluid, their velocities are more persistent, with
the net effect that dispersion remains approximately independent of particle size. This
conclusion emerged from Tchen’s original analysis (see Hinze 1975, Sections 5–7) and
has been confirmed by later work (Reeks 1977; Pismen & Nir 1978).

Problems arise, however, when there is significant particle drift due to strong
inhomogeneities in the turbulence. In such cases, particles entrained by eddies in one
region of the flow acquire sufficient inertia to drift into regions with quite different
turbulence characteristics while still retaining a ‘memory’ of their earlier motion.
Various attempts have been made to adjust the value of D

turb
in these circumstances

(Liu & Ilori 1974; Picart, Berlemont & Gouesbet 1986) but in reality the modifications
represent little more than empirical tuning to provide better agreement with
experimental data. The real problem centres on the attempt to represent experimental
measurements of particle dispersion in complex turbulent flows by a single correlation
of the form of equation (29). In contrast, the model proposed here assumes that the
term ®(ρ!

p
�!
r
) is unaltered from its value in homogeneous isotropic turbulence (i.e. an

assumption of ‘ local equilibrium’) and that convective particle drift arises from a quite
different physical effect, the source of which is the dominant turbulence term in the
radial momentum equation.
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Accordingly, because the current level of knowledge is insufficient to justify a more
elaborate model, it is assumed that the turbulent Schmidt number is everywhere unity.
Equation (24) expressing the conservation of particle mass is therefore written

1

r

¥
¥r

(rρ̀
p
V{
r
)­

¥
¥z

( ρ̀
p
V{
z
)¯

1

r

¥
¥r 9r(Dp

­D
turb

)
¥ρ̀

p

¥r : , (31)

with D
turb

given by (30) with Sc
turb

¯ 1. The specification of the gas eddy viscosity ν
turb

(which is assumed known) is discussed below.
The dominant turbulence correlation in the radial momentum equation (27) is

®¥(�!
r
�!
r
)}¥r, a term which represents the tendency of particles to acquire a drift

velocity in the direction of decreasing turbulence intensity. The effect has been
graphically termed ‘turbophoresis ’ (Reeks 1983) and is the cause of the huge increase
in deposition rate in the eddy-impaction regime. Physically, particles in regions of high
turbulence intensity acquire comparatively large fluctuating components of velocity
enabling them to drift into regions where the turbulence level is insufficiently high to
supply them with the necessary momentum for the return journey. In some respects,
therefore, the free-flight theory of deposition can be viewed as an intuitive but crude
attempt to model the term ®¥(�!

r
�!
r
)}¥r.

Accurate representation of the turbophoretic term is difficult because, due to particle
drift, the radial component of the mean-square fluctuating velocity of the particles
(�!

r
�!
r
) may not relate directly to the local radial component of the mean-square

fluctuating velocity of the gas (u!
r
u!
r
), which is assumed known. For the present,

however, this ‘memory effect ’ of the particles is ignored and the assumption is made
that (�!

r
�!
r
) depends only on the local value of (u!

r
u!
r
) just as if the particles were in

equilibrium in a homogeneous isotropic turbulence field. Thus,

®
¥
¥r

(�!
r
�!
r
)¯®

¥
¥r

[Γ(u!
r
u!
r
)], (32)

where Γ¯ (�!
r
�!
r
)}(u!

r
u!
r
) is a function of τ

p
and the local persistance time of the

turbulent eddies τ
g
. Theories of particle dispersion (Reeks 1977) indicate the

relationship

ΓE
τ
g

τ
g
­τ

p

. (33)

The eddy timescale τ
g

is difficult to specify precisely being equivalent neither to the
Eulerian nor to the Lagrangian integral timescales. It is defined here by the relationship

ν
turb

¯ (u!
r
u!
r
) τ

g
. (34)

Like ν
turb

, (u!
r
u!
r
) is assumed known and its specification is discussed below.

The term (�!φ �!φ®�!
r
�!
r
)}r in (27) is neglected because it is only appreciable very near

the centre of the pipe and therefore has little effect on deposition. The final term
�!
r
V[¡(ln ρ

p
) would be zero if the particle field were incompressible (which it is not).

Large gradients of ρ
p

do not occur simultaneously with large convection velocities,
however, and it is unlikely that this term plays a significant role in particle transport.
It is thus evident that the dominant turbulence term in (27) is the turbophoretic term.
Accordingly, the working form of the radial momentum equation is

V{
r

¥V{
r

¥r
¯®

Φz
D

V{
r

τ
p

®
¥
¥r

[Γ(u!
r
u!
r
)]­F{

L
. (35)
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Assuming for the moment that the effect of the Saffman force is of secondary
importance, (35) shows very clearly that the mean acceleration of the particles towards
the wall originates from the gradient of the fluid turbulence intensity (the turbophoretic
force) and is opposed by the mean viscous drag of the fluid.

If the Saffman force is neglected, the deposition rate can be obtained by solving (35)
for V{

r
followed by (31) for ρ̀

p
without recourse to the axial momentum equation.

Inclusion of the Saffman force couples the two momentum equations, however,
because the axial slip velocity (U{

z
®V{

z
) is needed to evaluate F{

L
, see (13). Adopting

similar arguments as for the radial momentum equation, the final two terms in (28) are
neglected, giving the working form of the axial momentum equation as

V{
r

¥V{
z

¥r
¯

Φz
D
(U{

z
®V{

z
)

τ
p

®
¥
¥r

(�!
r
�!
z
)­g. (36)

This equation is less important than the radial momentum equation and the modelling
of the turbulence term ®(�!

r
�!
z
) is not crucial. Accordingly, it is represented by a

gradient diffusion model with turbulent kinematic viscosity equal to that of the
background gas,

®(�!
r
�!
z
)¯ ν

turb

¥V{
z

¥r
. (37)

5. Boundary conditions

In seeking solutions to (31), (35) and (36), it is of prime importance to specify the
boundary conditions correctly. In previous theories, this aspect of the problem has
been seriously neglected. Here, only the simplest case of a perfectly absorbing wall is
considered. Particle reflection is not allowed.

The radial and axial momentum equations are essentially convection equations for
V{
r
and V{

z
. The influence of the pipe wall is therefore not transmitted upstream along

the time-mean particle trajectories and it is only necessary to specify conditions at the
centre-line, r¯ 0 (denoted below by subscript 0). These conditions are

V{
r!

¯ 0, (38)

V{
z!

¯U{
z!
­gτ

p
}Φz

D!
. (39)

The particle mass conservation equation is a convection–diffusion equation and, as
such, the wall exerts an upstream influence upon the particle flow. It therefore requires
boundary conditions at both the centreline and the pipe wall. At the centreline, flow
symmetry considerations dictate that

0¥ρ̀p

¥r 1
!

¯ 0. (40)

At the pipe wall (which is assumed to be perfectly absorbing), the commonly applied
boundary condition for particle density is ρ̀

p
¯ 0 but this is only (approximately)

correct for the limiting case of very small particles transported to the wall by Brownian
diffusion with zero convective velocity (Lee, Hanratty & Adrian 1989). In some
respects, the situation is similar to that of a vapour diffusing through a carrier gas and
condensing at a cooled surface. For problems of this type, the boundary condition
cannot be specified in purely continuum terms but must be established from a kinetic
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analysis of the particle behaviour very close to the absorbing surface. A new model
boundary condition has therefore been developed and details of the theory are
presented in Appendix A. The final equation is

J
w

¯ 9ρ̀p
V{
r
®(D

p
­D

turb
)
¥ρ̀

p

¥r :
w

¯ 9"# ρ̀p
V{
r 01­erf (M

r
)­

1

π"/#M
r

exp (®M #
r
)1:

w

, (41)

where J is the particle mass flux, M
r
¯V{

r
}(2R

p
T )"/# is a dimensionless time-mean

particle convective velocity, R
p
¯k}m

p
, erf is the error function and subscript w

indicates that all terms are to be evaluated at the wall (or, more strictly, at one particle
radius from the wall).

It is instructive to consider the behaviour of (41) for two limiting cases. First, when
the convective mass flux at the wall dominates over the Brownian diffusive flux,
M

rw
U¢, erf (M

rw
)U 1, exp (®M #

rw
)U 0, and the boundary condition becomes

0¥ρ̀p

¥r 1
w

¯ 0, (42)

expressing the physical fact that the wall exerts no upstream influence on the
particle flow. Secondly, when the Brownian flux dominates, M

rw
U 0, erf (M

rw
)U 0,

exp (®M #
rw

)U 1, and the boundary condition becomes

®(D
p
­D

turb
) 0¥ρ̀p

¥r 1
w

¯ ρ̀
pw 0Rp

T

2π 1
"/#

, (43)

an expression (familiar from the kinetic theory of gases) relating the diffusive flux to
the rate at which particles are projected towards the wall.

From (43), valid for the diffusive limit, it is evident that, in order to maintain a
concentration gradient at the wall, ρ̀

pw
cannot be precisely zero. The commonly applied

boundary condition of ρ̀
pw

¯ 0 is therefore strictly incorrect even in diffusion-
dominated deposition processes. In convection-dominated processes, ρ̀

pw
is of similar

magnitude to the centreline value ρ̀
p!

.

6. Fully developed particle flow in pipes

The term ‘fully developed particle flow’ implies that, in some sense to be determined,
the particle velocity and density profiles are independent of the axial location. It is not
intuitively obvious that such a particle flow is physically attainable and the governing
equations and boundary conditions must therefore be re-examined in order to express
them in a form independent of z.

The radial and axial momentum equations (35) and (36) can be written in
dimensionless form as

V
r+

dV{
r+

dr
+

¯®
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D
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r+
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®
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, (44)

V
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+
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D
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®V{
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)

τ
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®
d

dr
+

(�!
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)­g
+
, (45)
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Vr′Vr′

Schematic of mean-square fluctuating
particle velocity profile

a

r

Time-mean particle trajectories

F 2. Hypothetical particle movement in a turbulent pipe flow due to turbophoresis alone.

subject to the boundary conditions

(V{
r+

)
!
¯ 0, (46)

(V{
z+

)
!
¯ (U{
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!
­g

+
τ
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}Φz
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In these equations, r
+
¯ ruk}ν

g
, τ

p+
¯ τ

p
u#

$

}ν
g
, g

+
¯ gν

g
}u$

$

, F{
L+

¯F{
L
ν
g
}u$

$

and all
velocities are non-dimensionalized with respect to uk. Total, as opposed to partial,
derivatives have been used in anticipation of the following remarks.

Neglecting the Saffman force, (44) and (46) provide a complete specification for V{
r+

which is independent of z. The turbulence terms depend mainly on r
+

(and to a much
lesser extent on the dimensionless pipe radius a

+
¯ auk}ν

g
) and hence

V{
r+

¯V{
r+

(r
+
, a

+
, τ

p+
). (48)

Similarly, V{
z+

¯V{
z+

(r
+
, a

+
, τ

p+
, g

+
). (49)

For given a
+
, τ

p+
and g

+
, the dimensionless particle time-mean velocity field is identical

at all axial locations once the fully developed steady state has been established.
Inclusion of the Saffman force couples the two equations but does not alter this
conclusion.

At this point, it is interesting to consider the effect of the turbophoretic term in (44).
As shown in figure 2, the radial variation of (u!

r
u!
r
) is such that, for y

+
¯ a

+
®r

+
! 40,

the effect of turbophoresis is to propel particles towards the wall while, for y
+
" 40,

particles are projected (rather less forcibly because of the gentler gradient) towards the
pipe centreline. A fully developed particle flow independent of z can therefore only be
maintained if the effects of turbulent particle diffusion are such as to counteract exactly
the changes in the particle density profile brought about by the influence of
turbophoresis. This is one role of the diffusive terms in the particle conservation
equation.

Because of deposition on the pipe wall, ρ̀
p
¯ ρ̀

p
(r, z). A dimensionless time-mean

particle density ψ̀ is now defined by the relationship

ψ̀¯
ρ̀
p
(r, z)

ρ̀
pm

(z)
, ρ̀

pm
(z)¯

2

a#
&a

!

rρ̀
p
(r, z) dr. (50)

ρ̀
pm

(z) is the time-mean particle density averaged across the pipe (the ‘pipe-mean’
particle density) and is a function of z only. It will now be shown that ψ̀ is a function
of r only.

Consider first the variation of ρ̀
pm

with z. Assuming for the present that ψ̀¯ ψ̀(r),
the mass flux to the wall is

J
w
(z)¯ ρ̀

pm
(z) 9ψ̀V{

r
®(D

p
­D

turb
)
dψ̀

dr :
w

. (51)
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A deposition velocity is now defined by V
dep

¯ J
w
(z)}ρ̀

pm
(z) and is given in

dimensionless form by
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. (52)

It therefore follows that, if ψ̀¯ ψ̀(r), V
dep+

is independent of z. The total particle mass
flow rate at any axial location is

M
p
(z)¯&a
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2πrρ̀
p
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(r) dr¯ ρ̀
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!

2πrψ̀(r)V{
z
(r) dr, (53)

where a is the pipe radius and ψ̀¯ ψ̀(r) has again been assumed. A dimensionless
particle mass flow rate, independent of z, is thus given by

M
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Global conservation of particle mass requires

dM
p
(z)

dz
¯®2πaJ

w
(z). (55)

Substituting (51) and (53) into (55) and introducing (52) and (54) gives

dρ̀
pm

(z
+
)

dz
+

¯®Kρ̀
pm
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+
), (56)

where K¯ 2πaV
dep+

}M
p+

¯ constant. Hence, if ψ̀¯ ψ̀(r), the pipe-mean particle
density decays exponentially according to

ρ̀
pm

(z
+
)¯ ρ̀

pm
(0) exp (®Kz

+
), (57)

where ρ̀
pm

(0) is the value of ρ̀
pm

at z¯ z
+
¯ 0.

Non-dimensionalizing the particle mass conservation equation (31) with respect to
the wall variables and introducing (56) results in

1
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an equation which is independent of z. Similar non-dimensionalization of the
boundary conditions, (40) and (41), gives

0dψ̀

dr
+

1
!

¯ 0, (59)
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, (60)

which are also independent of z. It has therefore been shown that the scaling defined
by (50) results in a set of dimensionless equations which are completely independent of
z and therefore representative of fully developed turbulent particle flow in pipes.
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7. Solution of the particle equations

The complete set of particle equations in dimensionless form comprises the radial
and axial momentum equations (44) and (45) together with their boundary conditions
(46) and (47), and the particle conservation equation (58) with its boundary conditions
(59) and (60). The equations do not yield an analytical solution but are readily solved
numerically using a ‘time-marching’ approach. To this end, a time-derivative term is
added to each of (44), (45) and (58). Also, in anticipation of later discussion, the radial
coordinate r

+
is replaced by y

+
¯ a

+
®r

+
, the dimensionless distance from the wall.

Hence,

¥V{
y+

¥t
+

¯®V{
y+

¥V{
y+

¥y
+

­
Φz

D
V{
y+

τ
p+

®
¥

¥y
+

[Γ(u!
y+

u!
y+

)]­F{
L+

, (61)

¥V{
z+

¥t
+

¯®V{
y+

¥V{
z+

¥y
+

­
Φz

D
(U{

z+
®V{

z+
)

τ
p+

®
¥

¥y
+

(�!
y+

�!
z+

)­g
+
, (62)
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where t
+
¯ tu#

$

}ν
g
. The three unknown (dimensionless) dependent variables are the

wall-normal and axial time-mean convective velocities V{
y+

and V{
z+

, and the time-mean
particle density ψ̀. All turbulence quantities are known if the wall-normal variations of
the gas eddy viscosity ν

turb
, the turbulent Schmidt number Sc

turb
and the mean-square

fluctuating gas velocity (u!
y+

u!
y+

) are specified. The gas axial velocity profile U{
z+

(y
+
) can

be obtained by solving the Navier–Stokes equations with the specified variation of
ν
turb

. After discretization, the solution of the equations is obtained by marching
forward in ‘time’ from an arbitrary initial condition until a steady state corresponding
to ¥}¥t

+
¯ 0 is attained.

By introducing the particle con�ecti�e velocity (as opposed to the total velocity, see
(16)) and by using the ‘non-conservative’ form of the radial and axial momentum
equations, ψ̀ has been eliminated completely from (61) and (62). These may therefore
be solved for V{

y+
and V{

z+
in advance of solving for ψ̀ using (63). Numerical

conservation of momentum cannot, of course, be guaranteed using a non-conservative
differencing scheme but then neither is it a physically realistic requirement: an
unbalanced source of momentum already exists due to the assumption of a one-way
coupling between the gas and particle phases. However, having determined V{

y+
and

V{
z+

, the solution for ψ̀ may then be accomplished using a fully conservative finite
volume technique, ensuring that spurious numerical creation or loss of particles does
not occur.

The domain of integration extends from the wall to the pipe centreline and, because
of the rapidly varying turbulence, it is expedient to use a non-uniform (but smoothly
varying) discretization with the finest spacing near the wall. The situation is most
critical for small particles which respond very rapidly to the changing gas turbulence.
The behaviour of larger particles is more muted and, in consequence, the grid spacing
can be coarser. These changing requirements can be met in practice for the momentum
equations by setting the increment adjacent to the wall equal to one particle radius and
then increasing the spacing towards the pipe centreline according to a suitable
geometric progression.

The particle radial and axial velocity fields are obtained by a semi-implicit time-
marching integration of (61) and (62). The derivatives ¥}¥t

+
and ¥}¥y

+
are replaced by
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forward time and central space finite difference approximations respectively. The
equations are then marched forward in time until the steady-state solution is reached.
Because the equations are of the pure convection type, a small amount of second-order
artificial viscosity must be added to provide the necessary upwinding for numerical
stability. It is also desirable to represent the steady-state drag terms implicitly for
otherwise the maximum time step for numerical stability is of the same order as the
particle relaxation time and this results in large computational times for very small
particles. All other spatial derivatives are expressed explicitly, however.

The particle conservation equation is solved on a different computational grid. In the
limit of purely diffusional transport, the deposition rate is controlled by the particle
density gradient at the wall and, when Brownian diffusion dominates, this can be very
steep indeed. The grid spacing adjacent to the wall is therefore established automatically
by the computer program in such a way that the change in ψ̀ across the first increment
is no greater than 0±05. The remainder of the grid is again defined by a (different)
geometric progression and both the gas and particle velocity fields are interpolated
onto it using a spline interpolation routine. The solution of the particle conservation
equation is then obtained using a conservative implicit finite volume time-marching
scheme. Details of the numerical discretization and the implementation of the
boundary conditions can be found in Leeming (1996).

8. Specification of the gas turbulence

The theory of particle deposition described above assumes a detailed knowledge of
the gas flow field in which the particles are suspended. Differences between predicted
and observed deposition rates arise from limitations in both the gas turbulence
representation and the particle transport model and it is only possible to validate the
latter if the error associated with the former is small. Luckily, the gas turbulence
information required for predicting deposition in fully developed pipe flow is minimal.
Indeed, it is only necessary to know the radial variations of ν

turb
,Sc

turb
(here assumed

unity) and (u!
y
u!
y
).

Nevertheless, it is still important to specify these quantities accurately. This is
particularly true in the near-wall region (y

+
! 5) and also in the buffer layer (5! y

+

! 40). The dominant transport mechanism for very small particles is diffusion and the
particle flux towards the wall depends on the effective diffusion coefficient (D

p
­D

turb
).

Even the smallest particles are large and heavy in comparison with gas molecules,
however, and the laminar Schmidt number ν

g
}D

p
rarely falls much below 10$. The

‘ laminar’ sub-layer for particle diffusion is thus very much thinner than that for
momentum transport and so it is necessary to have an accurate model for ν

turb
much

closer to the wall than is required for momentum transport calculations. On the other
hand, the transport of larger particles is dominated by inertial effects, the turbophoretic
force being dependent on the gradient of (�!

y
�!
y
)¯Γ(u!

y
u!
y
). This is zero at the wall,

attains its maximum value in the buffer region at about y
+
¯ 20 and decays to zero

again by y
+
¯ 40.

The modelling of both turbulence quantities is also constrained by the stability
requirements of the particle transport scheme. The turbophoretic force per unit particle
mass is ®¥[(�!

y
�!
y
)]}¥y and, if this is to have a smooth radial variation, it should be

continuously differentiable. This in turn requires that (�!
y
�!
y
) be twice differentiable, a

restriction which also applies to ν
turb

and (u!
y
u!
y
) since (�!

y
�!
y
) is a simple function of both

through (33) and (34).
The chosen empirical models fulfil all these criteria and are described in detail in
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Appendix B. Figure 3 shows the variations with y
+

of ν
turb

and (u!
y+

u!
y+

)"/# and their
gradients and also includes a comparison with the experimental measurements of
Laufer (1954), Nunner (1956) and Eckelmann (1974) and results from the direct
numerical simulation (DNS) of Kim, Moin & Moser (1987).

9. Validation of the particle turbulence models

Modern optical techniques such as particle image velocimetry (PIV) provide a
wealth of information about time-mean velocity profiles and turbulence statistics and
recent years have seen the publication of a number of experimental studies of particle
movement in turbulent flows using this technique. To date, however, PIV has only been
applied successfully to liquid flows transporting large (100 µm) particles and the
information it provides is of little relevance to the present study. (The particle diameter
is comparable to the size of the dominant near-wall eddies and transport by
turbophoresis is suppressed.)

Nevertheless, although direct experimental validation of the particle turbulence
models is currently not possible, some corroboratory evidence is available from a
recent direct numerical simulation (DNS) by Brooke, Hanratty & McLaughlin (1994)
of the transport of fine aerosol particles in air in a fully developed channel flow. They
investigated three classes of particle having dimensionless diameters d

p+
of 0±28, 0±36
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and 0±50, corresponding relaxation times τ
p+

of 3, 5, and 10, and a material-to-gas
density ratio of 713. The channel half-width was 150 wall units and the Reynolds
number was 4000. Particles of this size are small enough to interact fully with the eddy
structure of the turbulence and their dynamic behaviour is representative of the
diffusion–impaction deposition regime.

Figure 4 shows a comparison between the models adopted for the present work and
data extracted from the paper by Brooke et al. Considering first the variation of
(u!

y+
u!
y+

)"/# for the gas, it can be seen that the profile from Brooke et al. is rather
different from the model described in Appendix B. This is surprising as the latter is a
very close fit to the data of Kim et al. (1987). Encouragingly, however, the two curves
coalesce near the wall and are indistinguishable for y

+
! 30, the most important region

from the point of view of particle deposition. The variations of (�!
y+

�!
y+

)"/# for the three
particle classes were calculated from (3), (33) and (34) and, comparing with the data
of Brooke et al., it is evident that the simple theory accurately predicts the dynamic
response in the central region of the pipe where the turbulence is near-homogeneous.
But even in the strongly inhomogeneous flow closer to the wall, it can be seen that the
theory still provides quite a good model. If a discrepancy exists at all, then it is only
close to the wall where it is just possible to discern a slight ‘memory effect ’ in the profile
for the largest particles (τ

p+
¯ 10) as they drift down the turbulence gradient.

Brooke et al. also presented results showing the variation of Sc
turb

across the pipe.
The values obtained were in the range 0±6!Sc

turb
! 1±4, a result which lends credence

to the assumption of Sc
turb

¯ 1 adopted for the present work.

10. The effect of turbophoresis

Before discussing the calculations of deposition rate obtained by solution of the full
set of equations, it is instructive to consider the effect of turbophoresis in isolation as
the role of this very important transport mechanism has not previously been clarified.
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Figure 5(a) shows the variation of (�!
y+

�!
y+

)"/# with y
+

for selected values of τ
p+

,
calculated using the model described above. Figure 5(b) shows the corresponding
dimensionless turbophoretic ‘ force ’,
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¯®
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dy
+

(�!
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), (64)

scaled by its own maximum value (F
+
)
turbo,max

which occurs at about y
+
¯ 20, almost

independently of τ
p+

. The variation of (F
+
)
turbo,max

with τ
p+

is plotted in figure 5(c).
The turbophoretic force accelerates the particles towards the wall creating a

convective or ‘drift ’ velocity which is opposed by the viscous drag force. Were the
particle acceleration and Saffman force negligible, (61) could easily be solved for V{

y+
,

which might then be appropriately termed the (dimensionless) ‘ turbophoretic velocity’,

(V{
y+

)
turbo

¯®
τ
p+

ΦF
D

d

dy
+

(�!
y+

�!
y+

). (65)

Assuming Φz
D

E 1, the maximum value of (V{
y+

)
turbo

for a given τ
p+

occurs at the position
of maximum turbophoretic force at y

+
E 20. The variation of (V{

y+
)
turbo,max

with τ
p+

is
thus obtained by multiplying the ordinate of figure 5(c) by τ

p+
, the result being shown

in figure 6. The resemblance of this curve to the experimentally determined
dimensionless deposition velocity V

dep+
(defined by equation (1) and also shown in the

figure) is striking and it is worth considering the implications a little further.
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F 6. Variation of the maximum dimensionless turbophoretic velocity (at y
+
E 20) with τ

p+
.

Experimental measurements of dimensionless deposition velocity from figure 1 shown for comparison
as the shaded region.

Figure 5(c) shows that, for particles with small inertia (τ
p+

! 1, say), (F
+
)
turbo,max

is
almost constant (because (�!

y+
�!
y+

)E (u!
y+

u!
y+

)). (V{
y+

)
turbo,max

is therefore directly
proportional to τ

p+
and hence, as shown in figure 6, tends to zero linearly with τ

p+
.

Physically, particles with small inertia cannot sustain a significant drift velocity against
the decelerating influence of viscous drag. Particle inertia increases with increasing τ

p+
,

however, and so (V{
y+

)
turbo,max

also increases reaching a flat peak of about 0±3 at
τ
p+

E 50. Thereafter, the effect of increasing particle inertia in reducing (�!
y+

�!
y+

) below
(u!

y+
u!
y+

) tends to reduce the turbophoretic velocity (although, for the values of τ
p+

shown in figure 6, the effect is not very pronounced). In this regime, particles with high
inertia respond less well to the turbulent fluctuations and so the turbophoretic velocity
begins to decline.

When comparing the curves of (V{
y+

)
turbo,max

and V
dep+

in figure 6, it is important to
appreciate that the former occurs at y

+
E 20 whereas the latter is evaluated at the wall

itself. The stopping distance s of a particle with relaxation time τ
p

given an initial
velocity (V{

y+
)
turbo,max

is, in dimensionless form, s
+
¯ τ

p+
(V{

y+
)
turbo,max.

It is therefore
only the larger particles (τ

p+
" 50, say) which have sufficient inertia to coast freely to

the wall from y
+
E 20 and, if the experimentally observed deposition velocities for

smaller particles are to be reproduced theoretically, transport mechanisms other than
turbophoresis must be operative in the region y

+
! 20.

At first glance therefore it might appear that the present theory offers no advantage
over the free-flight theory of Davies (1966) (which predicts deposition rates some two
orders of magnitude below the experimental values in the diffusion-impaction regime)
but this is actually not the case. The present theory provides a formal physical-
mathematical explanation of the origin of the force causing a wallwards drift of
particles in the buffer layer and shows that this force is proportional to the gradient of
(�!

y+
�!
y+

). The fact that the impulse supplied by the turbophoretic force is insufficient to
propel particles with τ

p+
! 50 directly to the wall should not be taken as an indication

that these particles are incapable of reaching the wall. As will emerge shortly,
diffusional transport mechanisms assume dominance when the turbophoretic force
declines in order to maintain an almost constant particle flux through the region
y
+
! 20.
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F 7. Theoretical predictions and experimental measurements (shaded region) of
dimensionless deposition velocity.

11. Computed deposition rates and experimental comparison

Figure 7 shows the dimensionless deposition velocity V
dep+

as a function of τ
p+

for
all three deposition regimes. The various curves were obtained by numerical solution
of the complete set of particle equations and should be compared with the compilation
of experimental results which is also included in the figure. Clearly, the predictions
(particularly when the Saffman force is included) are in excellent agreement with the
experimental data. Given the simplicity of the turbulence modelling, this must be
classed as a major achievement of the theory.

It can be seen from figure 7 that deposition in the diffusion-impaction and inertia-
moderated regimes is dominated by particle inertia and that V

dep+
is essentially a

function of τ
p+

only. For very small particles, however, the dominant transport
mechanism is diffusion. These particles are transported into the sub-layer by turbulent
diffusion and finally to the wall by Brownian diffusion, both processes being driven by
the particle density gradient. The deposition velocity in this regime, if presented as a
function of τ

p+
is then found to depend on the similarity parameter (τ

p+
}Sc#)"/$. This

is easily shown analytically by assuming the particle convective velocity to be zero and
integrating the particle conservation equation (58) (with K¯ 0) across the sub-layer
subject to the known variation of ν

turb
. The integration is similar to that performed by

Beal (1970) and gives

V
dep+

¯ 0±073Sc−#/$¯ 0±073(τ
p+

}Sc#)"/$ τ−"/$
p+

. (66)

The parameter (τ
p+

}Sc#)"/$ is independent of particle size if rarefied gas effects are
neglected. Figure 7 shows a comparison, for various values of (τ

p+
}Sc#)"/$, between

(66) and the full numerical solution. Obviously, the latter approaches the correct
diffusional limit asymptotically.

12. Interpretation of the particle dynamic behaviour

Apart from providing a simple model for predicting deposition rates in turbulent
pipe flow, the theory also furnishes information about the spatial variation of the time-
mean particle density and velocities in the pipe and the way in which particles of
different sizes respond to the turbulence.
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velocity, (b) forces (®ve towards the wall) and acceleration, and (c) particle density (all
dimensionless).

12.1. Dynamic beha�iour neglecting the Saffman lift force

The Saffman force provides the only coupling between the radial and axial momentum
equations (through the axial slip velocity U{

z
®V{

z
) and, if it is neglected, the governing

set of equations is reduced to the radial momentum equation (61) and the particle
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F 9. Particle fluxes in the near-wall region.

conservation equation (63). These are then sufficient to determine the (dimensionless)
convective velocity field V{

y+
and the (dimensionless) particle density field ψ̀.

Figure 8 shows profiles of V{
y+

, acceleration and force per unit mass of particles, and
ψ̀ for τ

p+
¯ 0±1, 1, 10, 100 and 1000. Particles with τ

p+
¯ 0±1 are in the diffusional

deposition regime, those with τ
p+

¯ 1, 10 and 100 represent the bottom, middle and top
of the diffusion-impaction regime and those with τ

p+
¯ 1000 are situated well into the

inertia-moderated regime.
Consider first the profiles of V{

y+
in figure 8(a), noting that negative values represent

velocities directed towards the wall and that different ordinate scales have been used
for the five diagrams. It is immediately obvious that all particle convective velocities
are very small. The maximum wallwards velocity (for τ

p+
¯ 100) is about 0±2uk, whilst

that for particles with τ
p+

¯ 0±1 is a mere 0±003uk. To put this in perspective, the axial
velocity at the centre of the pipe is about 18uk.

The changing magnitude of V{
y+

with increasing τ
p+

is closely related to the changing
turbophoretic velocity (V{

y+
)
turbo

, defined by (65). Figure 8(a) shows that profiles of V{
y+

and (V{
y+

)
turbo

are almost identical for the smaller particles (τ
p+

! 10) but display large
differences for particles with greater inertia. Turbophoresis tends to accelerate particles
down the turbulence gradient, the resultant viscous drag force attempting to restore
them to a state of equilibrium with the gas. The inertia of particles with τ

p+
! 10 is

sufficiently small for this balance to be struck and consequently, at the wall itself, the
convective velocity is very small indeed. With increased inertia, the particles can ‘coast ’
across the sub-layer and the convective velocity at the wall increases, a maximum value
of V{

y+
E 0±1 being attained at τ

p+
E 100. Further increase in τ

p+
causes a gradual

decline in the velocity at the wall due to the reduced response of the particles to the
buffer layer turbulence. (The decline is gradual because, although larger particles
respond less well to the turbulence, their increased inertia allows them to coast further.)

Figure 8(b) shows the corresponding force and acceleration profiles. All three terms
of the radial momentum equation have been plotted in order to demonstrate
graphically the changing relationships between turbophoresis, viscous drag and
particle acceleration. The graphs also demonstrate that the level of artificial viscosity
needed to stabilize the numerical integration has a negligible effect on the results. In the
plots, the dots represent the particle acceleration, whilst the line through these dots is
the net force per unit mass experienced by the particles minus the artificial dissipation
term. Clearly, the two are indistinguishable.

It should now be clear that turbophoresis is the mechanism responsible for
‘ injecting’ a convective flux of particles from the buffer layer into the region y

+
! 20,

see figure 9. However, without a corresponding removal mechanism this would result
in a continual accumulation of particles adjacent to the wall and a steady state could
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never be achieved. Convection in the axial direction does not assist because the particle
flow field is fully developed and hence the dimensionless axial particle flux for y

+
! 20

is independent of z. A mechanism must therefore exist for transporting particles to the
wall at precisely the same rate as they enter from the buffer layer. Particles with large
inertia can coast across the layer and then the radial flux in the region y

+
! 20 is purely

convective with an approximately constant particle density. On the other hand,
particles which cannot reach the wall by coasting rely on laminar or turbulent
diffusional mechanisms to supplement the convective flux. The particle density profile
therefore reflects the continuity requirement that the total radial particle flow,
convective plus diffusive, must remain exactly constant in the region y

+
! 20.

Particle density profiles are shown in figure 8(c). The smallest particles (τ
p+

¯ 0±1)
have only a tiny wallwards convective velocity and the particle density ψ̀ is almost
uniform except for a slight increase close to the wall. This spatial accumulation of
particles serves to provide the steep gradient of ψ̀ at the wall which is required to
generate the necessary Brownian diffusional flux. As particle inertia increases (τ

p+
¯

1) so too does the injected flux from the buffer region. The peak value of ψ̀ then rises
to establish the gradient necessary to sustain the increased diffusional flux at the wall.
However, it can also be seen that ψ̀ is non-zero at the wall itself. This implies that the
flux of depositing particles has both a convective and a diffusive component.

By τ
p+

¯ 10, deposition is dominated by convection but, surprisingly, the peak value
of ψ̀, which occurs at the wall itself, is extremely large. However, this large increase
in ψ̀ is required, not to provide a gradient for diffusion (which actually tends to drive
particles away from the wall), but to maintain a near-constant convective flux ψ̀V{

y+
,

V{
y+

being very small indeed at the wall. With further increase in τ
p+

, V{
y+

at the wall
increases rapidly and a large peak value of ψ̀ is no longer necessary to sustain the
convective flux. Instead, a gradient of particle density develops in the central region of
the pipe. This exactly counteracts, by diffusion, the tendency of turbophoresis in the
core region to transport particles towards the centreline (discussed previously in
connection with figure 2).

12.2. Dynamic beha�iour including the Saffman lift force

Inclusion of the Saffman force couples the axial and radial momentum equations and
the particle axial velocity profile can no longer be neglected. It is shown in figure 10(a),
together with profiles of wall-normal velocity (figure 10b), force and acceleration
(figure 10c) and particle density (figure 10d ) for τ

p+
¯ 1, 10 and 100. To aid

interpretation, profiles of V{
y+

and ψ̀ for the case of no lift have also been included.
The response of particles with τ

p+
% 1 is unchanged by the addition of the lift force

because the axial slip velocity is everywhere very small. With increasing inertia,
however, particles transported towards the wall by turbophoresis ‘retain a memory’ of
their own (higher) axial velocity from the core region. The resulting axial slip velocity
(the particles now lead the fluid), occurring as it does in a strong shear flow, creates a
wallwards force thus boosting the particle acceleration (see figure 10c).

Figure 10(b) shows that the effect on the wall-normal velocity of the larger particles
is dramatic. Without lift, particles with τ

p+
¯ 10 have only a small convective velocity

at the wall. With lift, the velocity increases by a factor of 20 to V{
y+

E 0±05. In
consequence, the enormous peak in particle density (30 times the bulk mean value, see
figure 8c) is greatly reduced to around twice the mean, see figure 10(d ). For particles
with τ

p+
& 100, the lift force totally dominates the near-wall behaviour and the

particles maintain their velocity all the way to the wall, the particle density therefore
remaining approximately constant.
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The changing importance of the various force and acceleration terms is illustrated in
figure 10(c) (which should be compared with the corresponding diagrams in figure 8b).
For the larger particles, turbophoresis acts to create the initial wallwards drift but
thereafter it is the lift force that drives the particles to the wall. This, in turn, explains
the differing shapes of the deposition curves in figure 7. The maximum deposition rate
is attained by particles with smaller τ

p+
when lift is acting because this force tends to

enhance the effects of inertia. In doing so, the peak near-wall particle density found in
the upper diffusion-impaction regime is reduced since particles are better able to
traverse the viscous sub-layer. This is illustrated in figure 11 which shows the peak
value of ψ, for both the lift and no-lift cases.

12.3. The effect of gra�ity

Calculations indicate that the effect of gravity on deposition rates from vertical flow is
insignificant. Upward, as opposed to downward, flow in a pipe can easily be simulated
by reversing the sign of g

+
in (62) but this has virtually no effect on the deposition rates.

It is true that gravity creates a downwards drift velocity and hence the axial velocity
profiles for particles flowing up and down the pipe are slightly different. However, the
dominant reason for particle axial slip (and thence the generation of a lift force) is not
this steady drift velocity but the rapid change in gas axial velocity as it is brought to
rest at the wall. In contrast, the calculations of Johansen (1991) indicated that gravity
does play a significant role in deposition from vertical flows. Unfortunately, because
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of the complexity of his turbulence modelling, it is difficult to pinpoint the cause of this
disagreement.

12.4. Validation

One of the striking results of the deposition theory is the prediction of increased
particle density close to the wall in the diffusion-impaction regime. This is not shown
by any of the free-flight theories of deposition and provides an obvious possibility for
experimental validation. At present, however, the only relevant published experiments
are those of Sun & Lin (1986) who investigated a flow of polydispersed sodium chloride
particles in air. Although their results are not quantifiable, they did report a
‘preferential concentration’ of particles near the wall which is, at least, encouraging.

Further corroboratory evidence can be obtained from direct numerical simulations.
Figure 12 shows the variation of ψ̀ (normalized by its value at y

+
¯ 40) in the region

y
+
! 10 for three particle classes in the diffusion-impaction regime (τ

p+
¯ 3, 5 and 10).

Included are predictions from the present model together with the DNS results of
Brooke et al. (1994) (who did not include the Saffman force in their calculations). The
present approach agrees well with the DNS data for τ

p+
¯ 3 but the peak particle

density is overpredicted by some 50% for τ
p+

¯ 5 and by almost 100% for τ
p+

¯ 10.
The correct prediction of the particle density near the wall is a severe test of any

transport model, either Eulerian or Lagrangian based, and it would be unwise to give
too much credence to the curves of figure 12. Nevertheless, an excessive preferential
concentration of mid-sized particles coupled with an underpredicted deposition
velocity is an indication that the turbophoresis model may require further attention.
The main deficiency of the present model is its failure to acknowledge the fact that the
more massive particles retain a ‘memory’ of the turbulence level of the gas through
which they have just passed. In consequence, the turbophoretic force associated with
these particles would probably decay less rapidly near the wall than the simple model
implies, thus resulting in a larger wall-normal velocity, an increase in deposition rate
and a reduction in peak particle density.

The interplay between turbophoresis, viscous drag and Saffman lift near the wall is
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evidently very complex and the balance illustrated in figure 10 may well be altered
significantly by the addition of a ‘turbulence memory’ effect. Furthermore, as was
noted earlier, wall-proximity effects on the particle lift and drag forces have been
neglected in the analysis and these may also play a significant part. Nevertheless, the
general conclusion that the Saffman lift force makes an important contribution, both
to the rate of deposition and to the near-wall particle density profile in the upper
diffusion-impaction and inertia-moderated regimes, appears justified. Further work is
required, however, to define precisely the relative importance of each transport
mechanism.

13. Conclusions

Unlike most previous theories, the deposition model presented in this paper is based
formally on the conservation equations of particle mass and momentum. These
equations are formulated in an Eulerian coordinate system and are Reynolds averaged.
The averaging process generates a number of turbulence correlations of which two are
of prime importance. One is the familiar turbulent diffusion flux, ‘driven’ by the time-
mean particle density gradient. The other is turbophoresis, a convective drift of
particles down gradients of mean-square fluctuating velocity. Turbophoresis is not a
small correction: it dominates the particle dynamic behaviour in the diffusion-
impaction and inertia-moderated regimes. Nonetheless, its importance has been
recognized by very few of the many workers in this field.

Using a very simple model for the turbophoretic force, the theory has been used to
calculate deposition from fully developed turbulent pipe flow. The particle conservation
equations have been solved numerically and deposition rates calculated for a range
of dimensionless relaxation times encompassing all the familiar deposition regimes
(10−#% τ

p+
% 10+$). Agreement between calculations and measurements is very good

apart from a tendency to underpredict deposition rates in the upper diffusion-impaction
regime. In this region, the simple model of turbophoresis, related as it is to the local
gas turbulence structure, may need to be extended to include the effects of particle
‘memory’.

The relationship between the Saffman lift force, turbophoresis and viscous drag is
complex and the balance may be significantly altered by the inclusion of a particle
‘memory’ effect in the turbophoresis model. Nevertheless, it is probable that the
Saffman force plays an important role in the inertia-moderated regime. In contrast, the
effect of gravity on deposition from vertical flows appears to be negligible.

Unlike previous free-flight theories, the model predicts an increase in particle density
close to the wall in the diffusion-impaction regime. This result, which is partially
corroborated by DNS calculations, provides a possibility for future experimental
validation. However, the peak particle density is very sensitive to the details of the
turbulence model and very precise measurements will be required if reliable conclusions
are to be drawn.

The deposition theory presented in this paper represents a considerable advance in
physical understanding over previous free-flight theories. It also offers many avenues
for future development. For example, using essentially the same turbulence models, the
theory can formally be extended to simulate three-dimensional particle transport in
more complex gas flow fields thus allowing the simultaneous calculation of laminar
(pure inertial) and turbulent particle transport using a universal numerical scheme (as
opposed to the cumbersome mixed Lagrangian–Eulerian methods currently in use). Of
course, such developments presuppose an accurate knowledge of the gas turbulence
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field and the current limitations in fluid turbulence prediction methods may well
provide the real restrictions to applications in particle transport problems. Never-
theless, the formalism is established and it is clear that the full-Eulerian Reynolds-
averaged approach offers many advantages for physical interpretation and practical
calculation which are not possible with other methods.
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Appendix A. Boundary condition at the pipe wall

The assumption that the particles are in local equilibrium with the turbulence
everywhere in the pipe implies that, when they enter the sub-layer, they do not carry
with them the random motion generated by the turbulence through which they have
just passed. Nevertheless, it is incorrect to assert that, at the ‘wall ’, the only diffusi�e
process operating is that due to Brownian motion. The ‘wall ’ boundary condition is
actually applied one particle radius distance from the solid surface because particles
can then deposit by interception. At this point, the turbulence has not quite decayed
to zero and eddy diffusion may still be a significant transport mechanism if the laminar
Schmidt number is large.

Consider an imaginary interface a very short distance λ from the pipe wall (see figure
13). At the interface, the particle mass flux towards the wall J is

J¯ ρ̀
p
V{
r
®(D

p
­D
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)
¥ρ̀

p

¥r
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It is now assumed that the particles possess a Maxwellian distribution of velocities
centred around the convective velocity V{

r
. Let f(ξ
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The integral is best performed by defining
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Transforming the variables and performing the integrations using standard results
gives

J¯ "

#
m

p
n
p
V{
r 91­erf (M

r
)­

1

π"/#M
r

exp (®M #
r
): , (A 4)
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Interface Wall

k!0
Particle flux at interface

J=qpVr– (Dp+Dturb)
¥qp

¥r

Particles with nr>0
impact the wall

nrVr

f

Assumed particle distribution function
at the interface (flowing Maxwellian)

F 13. The wall boundary condition: particle fluxes very near the solid surface.

where M
r
¯V{

r
}(2R

p
T)"/# and erf is the error function. Assuming λ to be small so that

(A 1) and (A 4) are effectively evaluated at the same position gives

J
w

¯ 9 ρ̀p
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r
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p
­D
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)
¥ρ̀
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¥r :
w

¯ 9"#ρ̀p
V{
r 01­erf (M

r
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1

π"/#M
r

exp (®M #
r
)1:

w

. (A 5)

If V{
rw

is known from the solution of the momentum equation, (A 5) provides a
relationship between ρ̀

pw
and (¥ρ̀

p
}¥r)

w
.

Appendix B. Turbulence models for the gas flow field

The model for the eddy viscosity ν
turb

is a modified version of that proposed by
Granville (1990). It is a two-layer model, the eddy viscosity being described by separate
functions for the near-wall and core flows, blended by a smooth transition. In
dimensionless form

ν
turb

}ν
g
¯ ν

c+
tanh (ν

w+
}ν

c+
). (B 1)

In the near-wall region
ν
w+

¯ κy
+
[1®exp (y#

+
}λ#

+
)], (B 2)

where y
+
¯ yuk}ν

g
, κ¯ 0±40 is von Ka! rma! n’s constant and λ

+
¯ 24. As explained

elegantly by Chapman & Kuhn (1986), the eddy viscosity should vary with y$ very near
the wall and the model predicts this behaviour correctly (ν

w+
D κy$

+
}λ#

+
). It also

recovers the so-called ‘ law of the wall ’ in the logarithmic region of the flow. For the
core flow,

ν
c+

¯ ν
o+ 91±1®

0±2
π

arctan 0 y#
+

(a
+
®y

+
)#1: , (B 3)

where ν
o+

represents the velocity defect model of Cebeci & Smith (1974),

ν
o+

¯αU{
zo+

δ
+
, δ

+
¯&a+

!

0r+a
+

1 01®
U{

z+

U{
zo+

1 dr
+
. (B 4)
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U{
zo+

is the dimensionless time-mean velocity at the pipe centreline and α¯ 0±03 as
suggested by Nituch, Sjolander & Head (1978). The correction to ν

o+
embodied in (B 3)

ensures that the eddy viscosity reaches a maximum at y
+
D 40 which is some 10%

greater than the value at the pipe centreline.
The model adopted for the radial component of the mean-square fluctuating velocity

(u!
y+

u!
y+

) is similar in form to that used for the eddy viscosity. Thus

(u!
y+

u!
y+

)"/#¯ u
c+

tanh (u
w+

}u
c+

), (B 5)
where

u
w+

¯ 0±0373y
+
[1®exp (®y

+
}4±67)], (B 6)

u
c+

¯ 0±90®
0±54

π
arctan 0 y#

+

(a
+
®y

+
)#1 . (B 7)

The constants were chosen to satisfy various boundary values and limiting behaviour
as suggested by the direct numerical simulations of Kim et al. (1987). The model was
designed for a Reynolds number of 4000 and no modifications were included to reflect
the changing behaviour of the core flow at higher Reynolds numbers. This should have
little effect on the prediction of deposition rates, however, as these are mainly
controlled by the turbulence variations close to the wall.
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